Sunday, January 26, 2020

Empirical Evidence Make Progress In Knowledge Philosophy Essay

Empirical Evidence Make Progress In Knowledge Philosophy Essay The dictionary definition of empirical evidence is evidence relating to or based on experiment and observation (rather than theory) or on practical experience (without reference to scientific principles). This type of evidence is necessary for a theory, in different areas of knowledge, to be confirmed. Empirical methods are generally used to base a theory or derive a conclusion in sciences (such as the natural sciences or the human sciences) after collecting all the necessary data. The meaning of the word empirical derives from the ancient Greek word for experience (ÃŽÂ µÃƒÅ½Ã‚ ¼Ãƒ Ã¢â€š ¬ÃƒÅ½Ã‚ µÃƒÅ½Ã‚ ¹Ãƒ Ã‚ ÃƒÅ½Ã‚ ¯ÃƒÅ½Ã‚ ±), which means knowledge based on direct perception of things or events through our senses. Therefore, empirical data is information that is derived from the trials and errors of experience. In this way, the empirical method is similar to the experimental method. The empirical method is generally characterized by the collection of a large amount of data, with or without much idea of what to expect. The empirical method is necessary in entering completely unexplored fields, and becomes less empirical as the acquired knowledge of the field increases. Throughout centuries researchers use empirical research and evidence to test reality i.e. to test the state of things as they actually exist, basing their findings on direct or indirect observation. This kind of research is mainly applied to empirical sciences, mainly the natural sciences and the human (social) sciences. In these areas knowledge should be based on observable phenomena capable of being experimented for their validity by other researchers working under the same conditions. In natural sciences empirical evidence is crucial and scientists can count on this to continue experimenting and make progress discovering new sights. The core skill of a scientist is to make observations, i.e. receive knowledge of the outside world through the senses. The scientist sees, hears, or in some other way notices whats going on in the world and becomes curious about whats happening. This also includes reading and studying what others have done in the past since scientific knowledge is cumulative. In physics, for example, when Newton came up with his Theory of Motion, he based his hypothesis on the work of Copernicus, Kepler, and Galileo as well as his own, newer observations. Another example is Darwin who formed his Theory of Evolution based on the works of other naturalists but mainly on observations during his voyage to chart the coastline of South America, a voyage that lasted almost 5 years, during which Darwin spent most of the time on land investigating geology and making natural history collections  [2]  . In chemistry, the most important issues of atomic theory have been proved experimentally and nobody doubts about the existence of i.e. atoms. Nowadays, everybody knows and nobody can deny that all elements are made of atoms and all atoms have a nucleus. Moreover, science and technology helped to discover and study the tiny world of atoms. For example, nucleus, the massive centre of the atom was discovered in 1911, but it took scientists another 21 years of experimenting to identify its parts (protons, neutrons, electrons). In addition, for many years scientists thought that there was nothing smaller than the proton or the neutron in the nucleus of the atom. In 1968, they discovered that there are new particles inside the proton and the neutron (the quarks) that are even smaller. As we can see, chemical theory is confirmed by detailed agreement with experimental results, although, it takes scientists many years of experimenting and observation. Biology is the science that studies life mainly from an experimental perspective. Observations and experiments are used vastly to help scientists gather information and make conclusions on several aspects. For example, in biology, disease resides in cells (and, perhaps ultimately, in genes), but we know this because cellular dysfunction can be demonstrated experimentally. In addition, disease can best be controlled by attending to cellular function and dysfunction and by intervening to manipulate the cell using techniques that have empirically demonstrated effectiveness. In human sciences the situation is different. Sciences such as Psychology have just recently managed to convince people that they are credible. This has been mainly achieved because through observations and experimenting it has produced quantifiable, repeatable results based on empirical evidence. In other sciences such as Economics, Economists have conducted controlled experiments constructed to observe participants reactions to specific situations. However, in many cases behaviour is governed more by emotion than by reason. In all human sciences, the experiments are performed on human beings, using relatively small sample sizes and artificial environments which make the results difficult to generalise. Nevertheless, no one can deny the usefulness of observations on human behaviour during differentà ¢Ã¢â€š ¬Ã‚ ¦. In other areas of knowledge, such as Mathematics, the methods used to verify knowledge are independent of experience. Of course they involve an objective, careful and systematic study of an area of knowledge, but facts depend on reasoning alone as in the equation 1+1=2 for example. Mathematics is considered to be the science of rigorous truth and an island of certainty in an ocean of doubt. In such areas of knowledge, empirical evidence cannot be used to make progress. However, one of its main branches, geometry, actually started as a natural, empirical science. Hilbert made important contributions to both axiomatic geometry and to general relativity. Of course, a geometrical theory in physical interpretation can never be validated with mathematical certainty, no matter how extensive the experimental tests to which it is subjected. Like any other theory of empirical science, it can acquire only a more or less high degree of confirmation. Indeed, the demand for mathematical certainty in empirical matters is misguided and unreasonable, since mathematical certainty of knowledge can be only attained at the price of analyticity and thus of complete lack of factual content  [3]  . This is also summarised in Einsteins words: As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality. The same stands for areas such as history, art, and religion. Religion, for example, is purely a matter of faith. People who choose to believe in God do not have evidence to support it and people who choose not to believe in God do not have evidence that there is no God. There is also no more evidence for any one God than for any other. It is just as sensible to worship the Gods of the ancient Greeks or Egyptians as it is to worship modern deities. Everybody must decide for himself or herself which religion (if any) to follow. And, when people decide to follow one religion, they believe that God exists even if their belief cannot empirically verified or falsified. Their belief is mainly based either on intuition or on some more or less intense personal religious experience. Some others have faith and their belief is based on the feeling that there must be something. As we see, whether or not God exists is something that cannot be proved (scientifically) by experimentation or observ ation, therefore, the existence of God is something that different people have different intuition about. As regards arts, From the above, I believe that empirical evidence used in the form of observation, experience, or experiment should be used in natural and human sciences, in order to provide accurate and unbiased information. This information will consist a reliable guide for future generations, which will be based on this information to make the necessary progress through further investigation. From the examples given, it is obvious that researchers should never stop examining, questioning and experimenting in order for new findings to come to light. Previous knowledge and experimental results form a solid base for new discoveries that make progress and evolve sciences. Above all, however, every scientist should question and analyse any findings in the most objective way and not allow prejudice influence his thoughts and his results. No hypothesis or theory can be called scientific or accepted if it lacks empirical evidence in favour. Therefore, empirical evidence can be use both to accept or counter any scientific hypothesis or theory. http://www.experiment-resources.com/empirical-evidence.html Read more: http://www.experiment-resources.com/empirical-evidence.html#ixzz0gIvSLOZN There is no evidence to support the doctrines of a particular religion. After all, certainty cannot be found in any area of knowledge. Even if we prove something by experiment or observation, it may turn out to be false after some years or more. The complete work of Charles Darwin on line (http://darwin-online.org.uk/) http://darwin-online.org.uk/content/frameset?viewtype=sideitemID=F10.3pageseq=1

Saturday, January 18, 2020

Music and Brain Development Essay

There are three major perspectives on the positive impact of music education to the core curricula in school. The study on how music shares value to brain development has opened new views for all educators. According to the study of Neurological Research in February 1997, music develops abstract reasoning skills needed for the learning process of children in math and science. It was proven that training in music is more efficient than computer learning for teaching math and science skills (Peretz and Zatorre, 2005).   It was reported that music training could be more effective than computer instruction for teaching these skills. The findings were the result of a two year experiment with preschoolers by Rauscher et. Al. Wriht et al in 1997, compared the effects of musical and non-musical training on intellectual development as a follow-up to their studies on music can enhance spatial-reasoning. They concluded that music enhanced brain functions that were required for learning mathematics, science and engineering (Brust, 2003). Several studies have suggested that beginning music training early corresponds to greater growth in certain areas of the brain (Schlang et al, 2003). For example, researchers in Germany identified the planum temporale, a part of the left hemisphere as the region of the brain responsible for the perfect pitch and speech. This term used magnetic resonance imaging (MRI) to look at the planun temporale in non-musicians and professional musicians, some with perfect pitch and some without it. They discovered that the planum temporale in those with perfect pitch was twice as large as the other groups. Also with perfect pitch has started a music lesson before age seven. Rauscher et al. (1997) found that musicians had thicker nerve fibers in the corpus callosum, the part of the brain that carries signals between the two hemispheres, if they started keyboard training before the age of seven. Babo (2001) discussed, researchers, work at the University of Konstanz in Germany which focused that exposure to music helped to rewire neural circuits. They concluded that the brains of pianists were more efficient at making skilled movements than the brains of others. These findings suggested that musical training could enhance brain function (Trainor and Schmidt, 2003). Schlaug et al. (1995) used MRI to discover that musicians who started studying music before the age of 7 had regions in their brains (the corpus callosum and the right motor cortex) that were larger than corresponding regions in both non-musicians and musicians whose training began at a later age. However, in response to questions about his study, Schlaug et al preferred not to recommend when music should be taught, since some very skilled musicians began performing in their twenties or thirties. Schlaug et al. also reported that most musicians who have perfect pitch started music lessons before the age of seven. However, according to Diamond and Hopson (1998), â€Å"early music training is associated with more growth in this one particular brain region†¦. if training starts later or is absent altogether, perfect pitch rarely shows up† (p. 4). Zatorre (2003) reported evidence that infants are born with nervous systems devoted exclusively to music. Studies are showing that early and ongoing musical training can help organize and develop children’s brains. In a study to determine the effect of systematic prenatal musical stimulation by observing musical behaviors exhibited between birth and 6, Fujioka et al (2006) found that infants who received systematic prenatal musical stimulation exhibited â€Å"remarkable attention behaviors.   Those infants could imitate accurately sounds made by adults (including non-family members), and appear to structure vocalization much earlier than infants who did not have prenatal musical training† (p. 21).   Only quite the researches focused on the prenatal musical training of the fetus. Personal Reflection I believe that musicians have more active contribution to brain development because they are required to perform in more complex sequences of finger movements. Musicians are regularly adapting to decisions on tempo, tone, style, rhythm, phrasing and feeling-training the brain to become incredibly good at organizing and performing a lot of activities all at the same time. Musicians in my point of view, exercise orchestration that have better payoff for lifelong attention skills, intelligence and skills in self-knowledge and self-expression. In my own opinion, there is a significant relationship between music and brain development. There is an interrelationship between music and education because of the eight basic intelligences:   linguistic; logical-mathematical; spatial; bodily-kinesthetic; musical; interpersonal; intrapersonal; and naturalist. Although, these intelligences are different from musical intelligences:emotional, spiritual and cultural than the other kinds of intelligences. Most importantly, he assumed that music could help some organize the way they think and work by helping them develop in other areas, such as math, language, and spatial reasoning. Gardner criticized school districts that sacrificed music in children’s education, calling them â€Å"arrogant and ignorant about the value of music education† (p. 142). Essay 2-The Mozart Effect Rauscher et al. (1993) used the term Mozart effect to describe the results of their study on the relationship between music and spatial task performance. It is based on the ear’s role in the development of movement, balance, language and pre-verbal communication as well as the integration of neurological responses stimulated by music The Mozart effect also refers to the way music is used to enhance the quality of life. For example, music helps children in obtaining good health, education, and creativity (Cjabris, 1999).   Rauscher et al. (1997) gave a group of college students three 10-minute-long sets of standard IQ spatial reasoning tasks: listening to a Mozart sonata for two pianos, listening to a relaxation tape, and sitting through silence. The results showed that the individuals who listened to Mozart had a distinct advantage in spatial task performance. Steele et al (1999) noted that students performed better â€Å"on the abstract/spatial reasoning tests after listening to Mozart than after listening to either the relaxation tape or to nothing† (p. 2). Although conditions differed significantly between music, silence, and relaxation, Shaw and his colleagues were careful to qualify the study results. Although spatial reasoning test scores rose as a result of listening to Mozart’s piano sonata in D major (K488), the effects were temporary. Jenkins (2001) noted that â€Å"the enhancing effect of the music condition is temporary, and does not extend beyond the 10-15 minute period during which subjects were engaged in each spatial task† (Rauscher et al., 1993, p. 2). The authors posed several questions for further research: â€Å"Could varying the amount of listening time optimize the Mozart effect? Could listening to Mozart also enhance other intelligence measures such as short-term memory, verbal reasoning, and quantitative reasoning? Would other kinds of music have an effect on IQ performance† (p. 2)? Though the answers to these questions were unclear, the authors concluded that music lacking in complexity failed to enhance performance. They also concluded that the complexity of Mozart’s music was responsible for its enhancing effect. Rauscher et al. replicated and extended these findings in 1995. They used the same tasks used in their first experiment but extended the types of listening examples used. College students were divided into 3 groups: those exposed to silence, the same Mozart music used in the 1993 study, and a piece by Philip Glass. As before, the Mozart group showed a significant increase in spatial IQ scores. Tomatis, a French physician, psychologist, and educator, researched the connection between early childhood development in the 1960s and the music of Mozart (Jenkins, 2001). College students listened to a Mozart sonata, then performed complicated visual tasks involving cutting and folding paper. However, there was no difference in the way these tasks were performed by either the students who listened to the sonata or the control groups who just relaxed before taking the test or listened to other kinds of music. Schellenberg (2006) pointed out that the studies on music instruction insubstantial overall because researchers only tried to repeat and extend their findings. For example, no one knew exactly which kind of musical training produced results and which kinds did not, who benefited most from it, and how long any intellectual gains resulting from music training lasted. In another study, Chabris (1999) reviewed previous studies and compared the effects of the Mozart recordings. Results revealed a statistically insignificant increase in the ability of individuals to complete tasks requiring spatial visualization skills and abstract reasoning. Chabris noted that â€Å"if listening to Mozart improves cognitive performance at all, it’s by improving overall cognitive arousal and concentration. It shouldn’t be viewed as an intellectual miracle drug† (p. 1). Steele (2001) agreed with Chabris, by stating that â€Å"there is a problem with the concept of classical music as Gatorade for the brain† (p. 1). A number of other researchers (Crncec et al, 2006) supported the belief that classical music does not increase basic intelligence. Rauscher, et l (1995) noted that because many researchers only measured the effect on general intelligence instead of on spatial-temporal abilities, they failed when they tried to repeat the original experiment. In 1995, Rauscher et al. replicated this study and again found that spatial-temporal reasoning improved after listening to the Mozart Sonata. Though daily exposure to Mozart’s music produced daily increases in scores, this effect did not apply to all styles of music or to all areas of intelligence. For example, Phillip Glass’ minimalist music did not enhance spatial-temporal reasoning. Further, the students’ scores did not improve when they performed a short-term memory task after listening to Mozart. Rauscher et al. (1999) concluded that â€Å"although the Mozart effect is intriguing and holds great promise for further explorations into the transfer of musical processing to other domains of reasoning, merely listening to music probably does not lead to lasting enhancement of spatial-temporal intelligence. Listening to music is a passive experience for most people, and does not require the involvement that actively creating music does† (p. 2).   This observation led researchers to suspect that actively creating music has greater benefits for spatial temporal intelligence than simply listening to it. Combining separate elements of an object into a whole or arranging them in a specific order are spatial-temporal operations. They require successive steps, which are dependent upon previous steps. Spatial-logical operations also require recognition of similarities or differences among objects and are generally one-step processes. For example, a child who is asked to classify objects according to their color or shape would be performing a spatial-logical operation. The Rauscher et al. (1999) model predicted that music training may increase spatial-temporal task scores, but not necessarily spatial-logical tasks. These studies did suggest casual relationships between music and spatial task performance. The authors concluded that music education was helpful for maximum cognitive development by demonstrating that music could improve the intellectual functioning of children. Personal Reflection In my own opinion, the study in Mozart effect is a new proof of music’s education and its importance. Since it is believed to development a child’s IQ, schools must offer music programs to help their students in a very substantial way. Music educators should work towards the inclusion of music education in the curriculum of public education. Also, the public’s perception of music education must be altered so that policymakers in education are forced to provide for conditions where music education may thrive. Many educators and researchers posit that music should be a more central part of   the school curriculum in light of studies that demonstrate a relationship between music and intellectual growth. Also, tentative research findings in support of music education have shown that people believe that there is an essential value to learning about music. Diamond (1998) argued that learning to play an instrument could increase a child’s capacity for â€Å"voluntary attention† (p. 7), while Porter (1998) concluded that music can teach â€Å"discipline, care, concentration, and perseverance† (p. 7). Music Learning and Memory for Music When memory for a sequence of visually presented letters is tested, the marked recency effect that characterizes studies of the PAS system is absent. Nonetheless, clear evidence of phonological coding is found in the form of a marked effect of phonological similarity ( Schlkind et al, 2003). auditory input. Further evidence for the interaction between self-generated phonological codes and auditory input is, of course, offered by the irrelevant speech effect. Performance is impaired by unwanted spoken material, with the crucial feature of the material being its phonological rather than its semantic characteristics, again suggesting that the interaction is occurring at a common phonological level ( Dowling, 1994). It should be pointed out at this stage, however, that the nature of the irrelevant sound is crucial. While speech in a foreign language is quite disruptive to performance, white noise is not, even when the intensity of the noise is pulsed so as to resemble the intensity envelope of the speech signal that has been shown to disrupt memory ( Dowling et al, 1995). The fact that memory is more disrupted by vocal than by nonvocal music might seem to suggest that the system is essentially speech based. It is possible, however, that the greater disruption by speech reflects the nature of the primary task, namely remembering digits, a task that is likely to operate principally in terms of the spoken names of the digits. It is entirely conceivable that a different primary task would lead to a different degree of disruption. One possibility then might be to look at studies investigating memory for environmental sounds. Unfortunately, the evidence in this area seems to be relatively sparse. Deutsch (2004) showed that their patient was better at remembering environmental sounds than spoken digits, but, unfortunately, it is possible that the task was done by first identifying the sounds and then remembering them semantically. Personal Reflection . Thinking of music memory as schematic is probably accurate for many of the interactions that both trained and untrained people have with music. However, recently I have become interested in the nature of representation when memory for music is essentially perfect. Whereas it appears that the majority of work in music cognition has examined short-term memory, I would like to examine longterm memory. By this I mean that I am interested in the way well-learned music is represented. People are able to remember a large repertory of music and retain it for many years. What kinds of codes make this retention possible? Clearly, proposing verbal codes in the traditional sense is impractical when trying to understand memory for melody (as opposed to the lyrics in vocal music). Even if we assume that a small minority of musicians can encode tunes in terms of musical structure, motor commands, or musical notation, the successful retention of music by untrained people suggests the existence of other types of durable codes. The explication of those codes has been the goal of my current program of research References    Blood, A., & Zatorre, R. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences,98, 11818-11823. Brust, J. (2003). Music and the neurologist: A historical perspective. In I.Peretz, & R. Zatorre (Eds.) The cognitive neuroscience of music (pp. 181-191). New York: Oxford University Press. Chabris, C (1999). Prelude or requiem for the ‘Mozart effect’? Nature, 400, 6747, 826-7. Crncec, R., Wilson, S., & Prior, M. (2006). No evidence for the Mozart effect in children. Music Perception, 23(4), 305- 317. Deutsch, D. (2004). The octave illusion revisited again. Journal of Experimental Psychology: Human Perception and Performance, 30 (2), 355-364. This article can be downloaded from Psych Info and from the author’s web page. Dowling, W. J. (1994). Melodic contour in hearing and remembering melodies. In R. Aiello (Ed.) Musical perceptions, (pp. 173-190 ). New York: Oxford University Press. Dowling, W. J. , Kwak, S., & Andrews, M. ( 1995). The time course of recognition of novel melodies. Perception & Psychophysics, 57(2), 136-49. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129, 2593-2608. This article can be downloaded. Jenkins, J.S. (2001). The Mozart effect. Journal of the Royal Society of Medicine,   94,170-172. Patel, A. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674-681. This article can be downloaded. discuss it from the neuroscientific perspective. Peretz, I., & Zatorre, R. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89-114. This article can be downloaded. This is an excellent review. Rauschecker, J. (2003). Functional organization and plasticity of auditory cortex. In Peretz, I., & Zatorre, R. (Eds.) The cognitive neuroscience of music (pp. (357-365). New York: Oxford University Press. Rauscher, F. (1999). Reply to Prelude or requiem for the â€Å"Mozart effect’? Nature, 400, 6747, 827-8. Schellenberg, E. G.(2005). Music and cognitive abilities. Current Directions in Psychological Science, 14 (6), 317-320. This article can be downloaded. Schellenberg, E.G. (2006). Long-term positive association between music lessons and IQ. Journal of Education Psychology, 98 (2), 457-468. This article can be downloaded. Schlaug, G. ( 2003). The brain of musicians. In Peretz, I., & Zatorre, R. (Eds.) The cognitive neuroscience of music (pp. (366-381). New York: Oxford University Press. Schulkind, A., Posner, R., & Rubin, D. (2003). Musical features that facilitate melody identification: How do you know it’s â€Å"your† song when they finally play it? Music Perception, 21, (2), 217-249. Steele, K., Dalla Bella, S., Peretz, I., Dunlop, T., Dawe, L., Humphrey, K., Shannon, R., Kirby, J. Jr., & Olmstead, C. (1999). Prelude or requiem for the ‘Mozart effect’? Nature, 400, 6747,826-7. Trainor, L., & Schmidt, L. (2003). Processing emotions induced by music. In I. Peretz, & R. Zatorre (Eds.) The cognitive neuroscience of music (pp. 310-324). New York: Oxford University Press. Zatorre, R. (2003). Absolute pitch: A model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6 (7), pp. 692-695.   

Friday, January 10, 2020

Professional Role/Code of Ethic

Codes of Ethis on the case of Mr. E Professional Roles and Values Western Governor University State Regulations and Nursing Standards Nursing, as other medical profession, aims at helping and saving the life of other. As much as nurses and physician wants to intervene to prolong a patient life, it’s important to consider patient’s wishes. Ethically, intubating Mr. E without proper discussion and consideration of his wishes is against his living will. It’s a violation of Provision I of ANA Code of Ethics in respecting patient’s dignity.The nurse also fail to meet the Standards of Competent Performance based on California Code of Regulation, Article 4, code 1443. 5, which stated â€Å" [nurses] acts as the client’s advocate, as circumstances require, by initiating action to improve health care or to change decisions or activities which are against the interests or wishes of the client [†¦]† (p. 70) Implication. According to code 2. 1 †Å"Primacy of patient’s interest† from American Nurses Association, it’s the nurse’s commitment to respect the uniqueness of each patient, and respect patient’s wishes.Therefore, the nurse is responsible to seek for a solution if patient’s wishes are conflict with others (p. 5). Based on the above codes, the nurse in the scenario must inform Mr. Y about Mr. E’s wish. The nurse also need to assess Mr. Y understanding of risk and benefit of the procedure, so he would have all the neccesary information to make decision. Code of Ethics The Code of Ethics was developed by the American Nurses Association as a framework for ethical guideline. The work serves as a standard in assisting nurses making ethical decision.According to the ANA Code of Ethics,(2001), provision I stated that nurses must treat patient with compassion and respect the patient’s dignity, worth, and uniqueness, regardless of social and economical status, nature of hea lth problem, and person’s attributes (p. 1). In specific, the interpretive statement 1. 4, in which the focus is on patient’s right to self-determination, is appropriate to apply in this scenario. (p. 4) Impact of Code. Code 1. 4 stated that nurses respect patient’s dignity by honor his or her own wishes. Thus, it’s important to inform Mr.Y of Mr. E’s wish as â€Å"do not resuscitate† (DNR). Although Mr. E is mentally challenge, he has his own feeling and perspective on his health status. Moreover, the patient’s mental condition when he signed Advance Directive and Power of Attorney is unclear; therefore, ignoring his wishes is a false assumption and an understatement to his decision-making capabality. As a nurse in this scenario, I would inform Mr. Y of his brother wish on Advance Directive. Ethics of Putting Patient on Ventilator. Putting Mr. E on ventilator based on the niece’s permission is unethical.The decision didnâ€⠄¢t make based on patient’s best interest due to Mr. Y unawareness of Advance Directive. In addition, the niece made the decision instead of Mr. Y; therefore, the patient’s Power of Attorney was not followed completely. As the nurse, I would call Mr. Y to explain the situation and the decision of his niece. I would also inform him of the patient’s wishes in the Advance Directive. As an advocate for patient, I would also bring up the patient’s wish to the physican’s attention, and discuss the need to inform both Mr. Y and his niece of the Advance Directive.Although Ms. H doesn’t have Power of Attorney, she plays a role in assisting Mr. Y decision-making since Mr. Y called her for suggestion. Ethics of Authorizing Ventilator. Mr. Y should considers his brother’s wish based on the Advance Directive. Mr. Y should also ask for the risks and benefits of putting his brother on ventilator. As his brother, Mr. Y would want to prolong his broth er’s life; however, Mr. Y should take in account of his brother’s desire, quality of life, and the extend of suffering. If Mr. Y doesn’t agree with the Advanced Directives, Mr.Y’s authorization is valid since the Advanced Directives is not fully completed. Analysis of Mr. E’s Advanced Directives Because of Mr. E mental health status, his capabality to make decision is unclear when he signed the Advanced Directives. Moreover, according to EmedicineHealth, â€Å"it’s important that the designated power of attorney knows and understands your [the patient] wishes† (Nabili, 2012). However, family member didn’t sign the Advance Directives, and the involvement of family is unclear. Thus, the appointed Power of Attorney may not know and understand the patient’s wish.The patient and family might not discuss patient’s decision. In addition, when the decision of Mr. Y conflicts with the decision of Mr. E in Advance Directive s, the situation becomes very complicated. HIPAA Aside from Mr. E complicated situation, there are major Health Insurance Portability and Accountability Act (HIPAA) violations in the scenario. The physician violated patient’s right to privacy protection by discuss his medical condition and situation to Ms. H in the waiting room, a public place. The information was disclosed to other patients, to Ms.H’s boyfriend, and other non-related health care staff. Moreover, discussing Mr. E condition to Ms. H should be questioning because Ms. H, although she’s the patient’s niece, is not the appointed power of attorney. One of the nurse role is advocate for paient. By not protecting patient’s privacy, a nurse also violate HIPAA. The nurse, although aware of the physician violation, did not intervene to protect Mr. E’s information. Therefore, she could be hold accountable for violation of HIPAA. In this scenario, a nurse commented on ignoring HIPAA.The nurse is not only violated patient’s privacy legally, but also ethically according to ANA Code of Ethics. Besides physician and nurse, the facility is also accountable for HIPAA violation, for the facility did not reinforce the importance of HIPAA with its staff and physician. Professional Conduct As the above paragraphs discuss, the nurse fails to conduct the standard of nursing by ignoring patient’s rights for privacy protection. By stating â€Å"forget it†¦no one pays attention to HIPAA anyway,† the nurse is at risk for violating HIPAA.Beside HIPAA, the cafeteria nurses fail to act as patient’s advocacy by stating â€Å" What difference does it makes? The guy’s got diabetes, ir retarded, and is already in a nursing home. † This nurse violated Provision I in Code of Ethics by ANA in which a nurse cares for patient with compassion and respect regardless of social and economical status, personal’s attribute, and nature of health problems (p. 1). Futhermore, lack of knowledge of Advance Directives is a misconduct of Provision II in Code of Ethics by not â€Å"primacy patient’s interest† and respect patient’s wishes.Steps. To avoid misconduct of professional standard, the nurse in this scenario should talk to the physician in private about disclosing patient information. The nurse first suggests to call Mr. Y and obtain permission to discuss care with Ms. H; then the nurse must inform Mr. Y the Advance Directives as well as assess Mr. Y understanding of risks and benefits of the procedure. Obtaining informed consent from Mr. Y is also a crucial step. If Mr. Y can’t be reach in a time sensitive manner, the nurse should contact the agent that helped Mr.E with the Advance Directive; she can then obtain information related to Mr. E decision-making ability at the time, and inform doctor and charge nurse for decision-making. However, in this scenario, the nurse should notify charge nurse and higher chain of command about the situation and the violation of HIPAA. Ethical committee should be notified to consult for appropriate actions. Regarding her colleagues, the nurse should inform her supervisor, without naming name, the need to orient staff regarding HIPAA, Advance Directives, and reinforce in Code of Ethics.By taking appropriate interventions, the nurse ensures dignity in patient care and maintain respect in work environment. References American Nurses Association. (2001). Code of ethics. Retrieved from http://nursingworld. org/MainMenuCategories/EthicsStandards/CodeofEthicsforNurses/Code-of-Ethics. pdf California. (2005). California nursing practice act: With regulations and related satutes. Matthew Bender & Co. , a member of the Lexis Group. Nabili, S. (2012). Advance directives. Retrieved from http://www. emedicinehealth. com/advance_directives/page2_em. htm